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Abstract. We study two-dimensional classically integrable field theory with independent
boundary conditions at each end, and obtain three possible generating functions for integrals of
motion when this model is an ultralocal one. Classically integrable boundary conditions can be
found when solving boundaryK± equations. In the quantum case, we also find that the unitarity
condition of the quantumR-matrix is sufficient to construct commutative quantities with boundaries,
and its reflection equations are obtained.

1. Introduction

Recently, there has been great progress in understanding two-dimensional integrable field
theory on a finite interval with independent boundary conditions at each end [1–5]. The
motivation is not only from the necessity in itself, but also from studies of boundary-related
phenomena in statistical systems near criticality [6] and integrable deformations of conformal
field theories [7].

In order to deal with integrable models with boundary, relying on previous results of
Cherednik [1], Sklyanin [2, 3] introduced a new generating function which originates from the
periodic boundary functions. In classically integrable models [2], if one has the well known
relation for the monodramy matrix [8],{T ⊗, T } = [r, T ⊗ T ], and ther-matrix satisfies the
condition ofr(α) = −r(−α), the new generating function defined in [x−, x+] can be expressed
as

τ(α) ≡ tr{K+(α)T (x+, x−, t, α)K−(α)T −1(x+, x−, t,−α)} (1)

whereK± are boundary reflection matrices.
Expanded as a Laurent series inα, all coefficients ofτ(α) make an infinite number of

integrals of motion which ensure the complete integrability of the model. From [8],τ(α)

must be in involution between different spectral parameterα and it is independent of time. In
other words,K± must satisfy some constraint equations, and the existence of non-trivialK±
solutions means there are non-trivial classically integrable boundary conditions (CIBCs).

There is no conditionr(α) = −r(−α) in affine Toda field theory (ATFT), so Bowcock
et al [5] developed a method of a modified Lax pair to deal with such models, in which the
new generating function in(−∞, x+] reads

τ(α) ≡ tr{T †(−∞, x+, t,−α)K+(α)T (−∞, x+, t, α)} (2)

in which ‘†’ denotes conjugation and has little difference with the original paper [5] because
of the different definition of theT -matrix. We must point out that the boundary Lax pair in
[5] has been modified from the periodic boundary Lax pair.
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In this paper, we find it is necessary to add a new parameter to the generating function (1)
in order to deal with ATFT, and no symmetry condition of ther-matrix is in fact needed.
Besides this modified form, we also construct two other possible generating functions by the
zero curvature representation. After we extend our results to quantum integrable systems, we
find that the unitarity condition of quantumR-matrix is sufficient to also construct commutative
quantities with boundary.

The paper is organized as follows. In section 2, three possible generating functions are
constructed by the zero curvature representation. In order to regard the constructed functions
as generating functions, algebra equations (reflection equations) and evolution equations of
theK± matrices appear in section 3. Then, we study ATFT in section 4 and find the links
between these generating functions. In section 5, we extend our results to the quantum case,
and demonstrate that the unitarity condition of the quantumR-matrix is sufficient to construct
commutative quantities. Then, we compare our commutative quantities with those of paper
[13] and find the relation between them. Finally, a discussion will be found in section 6.

2. Construction of generating functions

2.1. Periodic boundary condition

The zero curvature approach to inverse scattering [8] relies on the existence of a pair of linear
partial differential equations in ad × d matrix

∂x9 = U(x, t, α)9 ∂t9 = V (x, t, α)9
where the Lax pair (U,V ) ared × d matrices whose elements are functions of the complex-
valued fieldφ(x, t) and its derivatives, andα ∈ C is a spectral parameter. The zero curvature
condition appears from the compatibility of the above equation:

∂tU − ∂xV + [U, V ] = 0. (3)

By the zero curvature representation, we define the transition matrix

T (x, y, t, α) = P exp

{∫ x

y

U(x ′, t, α)dx ′
}

x > y (4)

whereP denotes a path ordering of non-commuting factors. Now, theT -matrix satisfies

∂xT = U(x, t, α)T
∂tT = V (x, t, α)T − T V (y, t, α) (5)

Id = T (x, x, t, α),
where Id is thed × d identity matrix.

It is well known that the trace of the monodramy matrixTL(t, α) ≡ T (L,−L, t, α) is a
generating function with a periodic boundary condition, so we have another more explicit form
τ(α) = ln trTL(t, α). Expanded as a Laurent series inα, τ(α) makes an infinite number of
integrals of motion. The conservation condition of these integrals can be proved by the second
equation of (5) with a periodic boundary condition, and the involution condition is proved in
the Poisson bracket

{T (x, y, α) ⊗, T (x, y, β)} = [r(α, β), T (x, y, α)⊗ T (x, y, β)] L > x > y > −L (6)

in whichT is ad × d matrix,
1
T≡ T ⊗ Id and

2
T≡ Id⊗ T . r(α, β) is ad2× d2 matrix whose

elements depend onα andβ only. The Jacobi identity for the bracket holds if and only if the
r-matrix is a solution of the classical Yang–Baxter equation.

Under the periodic boundary condition, it is obvious that{τ(α) ⊗, τ (β)} = 0. Soτ(α)
constructs a family of generating functions for the integrals of motion.
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2.2. Independent boundary condition

As soon as the periodic boundary condition is broken,τ(α) defined before should be not a
conservative quantity, so that we have to find a new expression for the generating function. As
discussed in [4, 5], if the Lagrangian density in bulk theory isLf , then the new Lagrangian
density with boundary appears as

L = θ(x+ − x)θ(x − x−)Lf − δ(x+ − x)V+(φ(x+), ∂µφ(x+))

−δ(x − x−)V−(φ(x−), ∂µφ(x−)). (7)

By means of the principle of the least action associated with (7), we will obtain the motion
equation in (x−, x+) and the boundary equations at each end.

If Lf is expressed asLf = 1
2∂µφ∂

µφ − V (φ) andV± depend only onφ(x±) (and are
independent of the derivatives), the boundary equations at each end will be

∂xφ = ∓∂φV± x = x±. (8)

At each end, ifφ(x) is a smooth function of the coordinatex, we can extend the motion
equation to the whole domain [x−, x+], so we can do the Lax pair. In other words, we keep
the uniform expression of the fundamental Poisson bracket in the whole domain, even if it is
an independent boundary condition.

Similar to the definition of the transition matrix, there is another matrix function

F(x, t, α) = P exp

{∫ t

t0

V (x, t ′, α)dt ′
}

t > t0. (9)

By the zero curvature condition, we construct a quantity which is independent of time:

F−1(x+, t1, α)T (x+, x−, t1, α)F (x−, t1, α) = F−1(x+, t2, α)T (x+, x−, t2, α)F (x−, t2, α). (10)

It can be proved easily because both sides in the equation are equal toT (x+, x−, t0, α).
With another equation of argument (−α + δ), which can be obtained by the same method,

a generating function with boundary can be constructed as follows. For example,

tr{[F(x+, t,−α + δ)F−1(x+, t, α)] T (x+, x−, t, α)
×[F(x−, t, α)F−1(x−, t,−α + δ)] T −1(x+, x−, t,−α + δ)}.

By the product method, it is obvious that this quantity is a conservative quantity. If we
regard it as a generating function for integrals of motion, there are two main problems: (1) Does
such a constructed quantity satisfy the involution condition? (2) The quantity, which comes
from theF -matrix, must be independent oft . Based on these problems, we introduce theK±
matrices instead of theF terms and impose involution and conservation conditions on the new
form. The new generating function is

(a)

τ(α) = tr{K+(x+, t, α)T (x+, x−, t, α)K−(x−, t, α)T −1(x+, x−, t,−α + δ)}. (11)

Moreover, we use ‘†’ (conjugation) or ‘t’ (transposition) instead of ‘−1’ (inverse) in order
thatK+ andK− depend only on the variables of the boundaryx+ andx−, respectively. The
results are:

(b)

τ(α) = tr{K+(x+, t, α)T (x+, x−, t, α)K−(x−, t, α)T t(x+, x−, t,−α + δ)} (12)

(c)

τ(α) = tr{K+(x+, t, α)T (x+, x−, t, α)K−(x−, t, α)T †(x+, x−, t,−α + δ)}. (13)

In (11)–(13), theK± matrices andδ are similar in symbols only. Each of these quantities
will be a generating function of integrable systems with boundary, if both the involution and
conservation conditions are satisfied.
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3. τ (α) as a generating function

It is well known that generating functions for integrals of motion must be in involution (between
each other) and independent of time [8]. So if we regard quantity (11) as a generating function,
some constraint conditions must be imposed on it. Now we study quantity (11) in this section.

3.1. Involution condition

Taking notation similar to paper [3], we define

T+(x, α) = T −1(x+, x, t,−α + δ)K+(x+, t, α)T (x+, x, t, α)

T−(x, α) = T (x, x−, t, α)K−(x−, t, α)T −1(x, x−, t,−α + δ)

T (x, α) = T−(x, α)T+(x, α).

In comparison with quantity (11), we find trT (x, α) is just equal toτ(α). Now, we impose
some constraint conditions on theK± matrices:

{K±(x±, t, α) ⊗, T (x+, x−, t, β)} = 0

{K±(α) ⊗, K±(β)} = 0 {K±(α) ⊗, K∓(β)} = 0. (14)

This implies

{T+(x, t)
⊗, T−(x, t)} = 0.

If theK± matrices are independent of field variances, condition (14) is satisfied naturally.
However, we must point out that theK±matrices, in general, can depend on the field variables.
The Poisson bracket onT± is as follows.

Proposition 1. If theK+ matrix satisfies

0= −r(−α + δ,−γ + δ)
1
K+ (t, α)

2
K+ (t, γ )+

1
K+ (t, α)r(α,−γ + δ)

2
K+ (t, γ )

+
2
K+ (t, γ )r(−α + δ, γ )

1
K+ (t, α)−

1
K+ (t, α)

2
K+ (t, γ )r(α, γ ) (15)

then theT+ algebra should obey the following relation:

{ 1
T + (x, α),

2
T + (x, γ )} = −r(−α + δ,−γ + δ)

1
T + (x, α)

2
T + (x, γ )

+
1
T + (x, α)r(α,−γ + δ)

2
T + (x, γ )+

2
T + (x, γ )r(−α + δ, γ )

1
T + (x, α)

− 1
T + (x, α)

2
T + (x, γ )r(α, γ ). (16)

It should be emphasized thatK+ is a subalgebra of theT+ algebra according to the definition
of T+. Proposition 1 can be proved by calculating the Poisson bracket onT+ directly. There is
another algebra ofT− similar toT+.

Proposition 2. If theK− matrix satisfies

0= r(α, γ ) 1
K− (t, α)

2
K− (t, γ )−

1
K− (t, α)r(−α + δ, γ )

2
K− (t, γ )

− 2
K− (t, γ )r(α,−γ + δ)

1
K− (t, α)

+
1
K− (t, α)

2
K− (t, γ )r(−α + δ,−γ + δ) (17)
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then it leads to the relation of theT− algebra being

{ 1
T − (x, α),

2
T − (x, γ )} = r(α, γ )

1
T − (x, α)

2
T − (x, γ )−

1
T − (x, α)r(−α + δ, γ )

2
T − (x, γ )

− 2
T − (x, γ )r(α,−γ + δ)

1
T − (x, α)

+
1
T − (x, α)

2
T − (x, γ )r(−α + δ,−γ + δ). (18)

The proof is similar to that of proposition 1. Used propositions 1 and 2, the Poisson
bracket onT (x, α) can be calculated as follows:

{ 1
T (x, α),

2
T (x, γ )} = { 1

T − (x, α)
1
T + (x, α),

2
T − (x, γ )

2
T + (x, γ )}

= 1
T − (x, α)

2
T − (x, γ ){

1
T + (x, α),

2
T + (x, γ )}

+{ 1
T − (x, α),

2
T − (x, γ )}

1
T + (x, α)

2
T + (x, γ )

= [r(α, γ ),
1
T (x, α)

2
T (x, γ )] + [

1
T (x, α),

2
T − (x, γ )r(α,−γ + δ)

2
T + (x, γ )]

+[
2
T (x, γ ),

1
T − (x, α)r(−α + δ, γ )

1
T + (x, α)].

After taking the trace ofT , we find

{tr 1
T (x, α), tr

2
T (x, γ )} = tr1tr2{

1
T (x, α),

2
T (x, γ )} = 0

that is,

{ 1
τ (α),

2
τ (γ )} = 0. (19)

In other words,τ(α) constructs a one-parameter involutive family. Here we note that no
symmetry conditions of ther-matrix are used to obtain equation (19). Consequently, it can be
applied to the general model.

3.2. Conservation condition

If τ(α) is a generating function for integrals of motion, it must be independent of time. We
find

∂t trT (x, α) = ∂t tr{K+(t, α)T (x+, x−, t, α)K−(t, α)T −1(x+, x−, t,−α + δ)}
= tr{[∂tK+(t, α)− V (x+, t,−α + δ)K+(t, α) +K+(t, α)V (x+, t, α)]

×T (x+, x−, t, α)K−(t, α)T −1(x+, x−, t,−α + δ)

+[∂tK−(t, α)− V (x−, t, α)K−(t, α) +K−(t, α)V (x−, t,−α + δ)]

×T −1(x+, x−, t,−α + δ)K+(t, α)T (x+, x−, t, α)}. (20)

Taking∂t trT (x, α) = 0, and supposing there is no connection between the boundary variances
at each end, we obtain the evolution equations of theK± matrices

∂tK+(t, α)− V (x+, t,−α + δ)K+(t, α) +K+(t, α)V (x+, t, α) = 0

∂tK−(t, α)− V (x−, t, α)K−(t, α) +K−(t, α)V (x−, t,−α + δ) = 0. (21)

For these equations, we find immediately that there are two isomorphisms betweenK+

andK−, which areK+(α)→ K−(−α + δ) andK+(α)→ K−1
− (α).

If K± are constant matrices (∂tK± = 0), equation (21) can be simplified as

V (x+, t,−α + δ)K+(t, α) = K+(t, α)V (x+, t, α)

V (x−, t, α)K−(t, α) = K−(t, α)V (x−, t,−α + δ). (22)
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In the present case, we note that theK± matrices are not singular matrices, so that the
determinants ofV satisfy

detV (x±, t,−α + δ) = detV (x±, t, α) (23)

by which we can obtain the value ofδ. After inserting theδ value into equation (22), we can
find some non-trivial CIBCs when non-trivialK± matrices appear. In other words, a class of
K± matrices is related to a class of integrable boundary conditions.

We must point out thatK± matrices depending on field variables have their meaning in
fact [9]. On the one hand, we must use suchK± matrices in order that quantity (11) can also
be regarded as a generating function on the periodic boundary condition. On the other hand,
studying suchK± matrices, we understand the integrable condition more deeply.

When Sklyanin’s function (1) is regarded as a generating function in ATFT, boundaryK±
matrices will have no constant solution in equation (21) (except for sine–Gordon theory). So
we have to solve equation (21) as differential equations. Apart from this difficulty, even when
one has found a non-trivial solution, one had to prove the involution condition again because
condition (14) may be broken. In our method,δ added to spectral parameter guarantees the
existence of constantK± matrices, andδ can be solved by means of equation (23), so theK±
matrices solving procedure is simplified effectively.

Proposition 3. If K± matrices satisfy not only the algebra equations (15) and (17), but also
the evolution equations of (21),trT (x, α) is a generating function for the integrals of motion.

There is a difficult step in proving this proposition. Are solutions of theK± matrices in
equation (21) compatible with the algebra equations (15) and (17)? Although this is true in
sine–Gordon theory [10] and it has been proved in ATFT [5] with the form of (12), it is still
an open problem in general theory. If this compatibility is satisfied, the proposition is proved
naturally.

3.3. Other generating functions

As exhibited in the above subsections, we also obtain the algebra and evolution equations of
otherK± matrices when quantities (12) or (13) are regarded as a generating function for the
integrals of motion. In the form of (12), we have

0= r t1t2(−α + δ,−γ + δ)
1
K+ (t, α)

2
K+ (t, γ )+

1
K+ (t, α)r

t2(α,−γ + δ)
2
K+ (t, γ )

+
2
K+ (t, γ )r

t1(−α + δ, γ )
1
K+ (t, α)+

1
K+ (t, α)

2
K+ (t, γ )r(α, γ )

0= r(α, γ ) 1
K− (t, α)

2
K− (t, γ )+

1
K− (t, α)r t1(−α + δ, γ )

2
K− (t, γ )

+
2
K− (t, γ )r t2(α,−γ + δ)

1
K− (t, α)

+
1
K− (t, α)

2
K− (t, γ )r t1t2(−α + δ,−γ + δ) (24)

where the upper indices ‘ti , i = 1, 2’ denote transposition on the ‘i’ space. The evolution
equations are

0= ∂tK+(t, α) + V t(x+, t,−α + δ)K+(t, α) +K+(t, α)V (x+, t, α)

0= ∂tK−(t, α)− V (x−, t, α)K−(t, α)−K−(t, α)V t(x−, t,−α + δ). (25)

Let ∂tK± = 0, we can also obtain theδ value in (25) by taking determinants. With the
constraint conditions of (24) and (25), quantity (12) is a generating function for the integrals
of motion.
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In the form of (13), the similar equations are still balanced except that we must use ‘†’
(conjugation) instead of ‘t’ (transposition). If these modified equations are satisfied, quantity
(13) can also be regarded as a generating function for the integrals of motion.

Now, we have obtained three forms of generating function as well as their constraint
conditions. If they are all regarded as generating functions, we believe in fact that they are the
same. In the next section, we will prove it explicitly in ATFT.

4. Classically integrable boundary condition in ATFT

4.1. Links among generating function

The Lagrangian in ATFT with independent boundary condition is [5, 11]

L =
∫ +∞

−∞
dx
∫ +∞

−∞
dt

{
θ(x − x−)θ(x+ − x)

[
1

2
∂µφa∂

µφa − m
2

β2

r∑
0

ni(e
βαi ·φ − 1)

]
−δ(x − x−)V−(φ(x−), ∂µφ(x−))− δ(x+ − x)V+(φ(x+), ∂µφ(x+))

}
(26)

wherem is the mass scale andβ is the coupling constant in the real domain;αi are simple roots
of a simple Lie algebra of rankr (including the affine rootα0). We have

∑r
0 niαi = 0 and

n0 = 1. This is a theory ofr scalar fields (αi ·φ =
∑r−1

a=0 α
a
i φa). The potentialsV+ andV− are

additions on the endsx+ andx−, respectively. They denote independent boundary conditions.
WhenV± depend onφ(x±) only (and are independent of the derivatives), we obtain

(∂2
t − ∂2

x )φ = −
m2

β

r∑
0

niαi eβαi ·φ x− < x < x+

∂xφa = ∓∂V±
∂φa

x = x±. (27)

The Lax pair in ATFT reads as (λ = eα)

U(x, t, λ) = −
{

1

2
βH · ∂tφ +m

r∑
0

√
mi(λEαi + λ−1E−αi ) eβαi ·φ/2

}
V (x, t, λ) = −

{
1

2
βH · ∂xφ +m

r∑
0

√
mi(λEαi − λ−1E−αi ) eβαi ·φ/2

}
(28)

in whichH andE±αi are the Cartan subalgebra and the generators responding to the simple
roots, respectively, of the simple Lie algebra of rankr. The coefficientsmi are equal toniα2

i /8.
We have the Lie algebra relation

[Hi,Hj ] = 0 [H,E±αi ] = ±αiE±αi
[Eαi , E−αi ] = 2αi ·H/(α2

i ). (29)

It has been pointed out by Hollwood [12] that the complex affine Toda theories have
soliton solutions (in which the coupling constantβ is purely imaginary), in contrast with the
real coupling constant. The Lagrangian, motion equation and Lax pair in [12] can be expressed
similarly to equations (26)–(28) except for takingβ → iβ̃ (β̃ ∈ Re). In our paper, we use
equations (26)–(28) in general, and distinguish them only when the real and imaginary cases
can not be treated in the same way.

For those generators in the Lax pair (28), we can find a representation in which they satisfy

Ht
i = H †

i = Hi Et
±αi = E†

±αi = E∓αi .
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So there is an automorphism map:

Hi → H ′i = �−1Hi� = −Hi
Eαi → E′αi = �−1Eαi� = E−αi
E−αi → E′−αi = �−1E−αi� = Eαi .

The new generators satisfy the same Lie algebra relation (29). In other words, we have

U t(x, λ) = U(x, λ−1) = −�−1U(x,−λ)�
V t(x, λ) = V (x,−λ−1) = −�−1V (x,−λ)�. (30)

We note that equation (30) can be applied to both real and imaginary coupling constant cases.
However, if one uses ‘†’ instead of ‘t’, equation (30) must be modified because of its complex
fields.

From the definition ofT (x, y, t, λ), we have

∂xT
t(x, y, λ) = T t(x, y, λ)U t(x, λ)

= T t(x, y, λ)[−�−1U(x,−λ)�]

or

∂x [�T
t(x, y, λ)�−1] = −[�T t(x, y, λ)�−1]U(x,−λ).

Comparing this with∂xT −1(x, y, λ) = −T −1(x, y, λ)U(x, λ) and the initial condition in (5),
we obtain

�T t(x, y, λ)�−1 = T −1(x, y,−λ)
or

�T t(x, y, α)�−1 = T −1(x, y, α + iπ). (31)

This implies

tr{K−(α)T −1(−α + δ)K+(α)T (α)} = tr{K−(α)�T t(−α + δ + iπ)�−1K+(α)T (α)}
= tr{K̃−(α)T t(−α + δ′)K̃+(α)T (α)} (32)

in which theK± matrices in (11) and (12) are now distinguished byK± and K̃±, and the
quantities added onto the spectral parameter becomeδ andδ′, respectively. In other words,
quantity (11) is equal to (12), ifδ′ is equal toδ + iπ and the reflection matrices satisfy

K̃−(α) = K−(α)� K̃+(α) = �−1K+(α). (33)

Using the second equation of (30) and comparing equation (21) with (25), we find that
these relations appear again. So quantities (11) and (12) are in fact the same, when both are
regarded as generating functions for the integrals of motion.

In the real coupling constant and real fields case, if we use ‘†’ instead of ‘t’, equation (30)
is still balanced when the spectral parameter is real. So we obtain a relation similar to (32)
again. In this case, when we rewrite (13) asτ(α) = trK̄−(α)T †(−α + δ′′)k̄+(α)T (α), then

K̃±(α) = K̄±(α) δ′ = δ′′ = δ + iπ. (34)

Now, we have proved quantity (11) is equal to (12) when both are regarded as generating
functions in ATFT. When the coupling constant is real, they are also equal to the generating
function (13). However, when the coupling constant is purely imaginary, equation (30) may
be not satisfied, so theK± matrices in (13) may have no constant solution.
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4.2. Classically integrable boundary condition

In real coupling constant ATFT, if we regardτ(α) = trK̄−(α)T †(−α + δ)K̄+(α)T (α) as a
generating function, we will obtain the evolution equation ofK̄+ on thex+ boundary:

V †(x+,−α + δ)K̄+(α) + K̄+(α)V (x+, α) = 0. (35)

After takingδ = 0, we obtain the equation for̄K−1
+ (λ) (in whichλ = eα):

1

2

[
K̄−1

+ (λ),
β

m
∂xφ ·H

]
+

=
[
K̄−1

+ (λ),

r∑
0

√
mi(λEαi − λ−1E−αi )e

βαi ·φ/2
]
−
. (36)

By the boundary equation (27), this is just the reflection equation that appears in [5]. We
find that theK+ andT matrices defined in [5] are just the quantities ofK̄−1

+ andT −1 in our
paper, according to a different definition of the Lax pair. In analogy with the method in [5],
we solve equation (36) and obtain CIBCs in ATFT. In the simple-laced case, we have the same
as in [5],

β

m
∂xφ = −

r∑
0

Bi

√
ni

2|αi |2αie
βαi ·φ/2

in which

|Bi | = 2 i = 0, 1, . . . , r or Bi = 0 i = 0, 1, . . . , r. (37)

In the imaginary coupling constant case, we regardτ(α) = trK̃−(α)T t(−α+δ)K̃+(α)T (α)

as a generating function. The results in the real coupling constant case can be used thanks
to section 4.1. In other words, the new CIBCs can be obtained by analytic continuation by
β → iβ̃ (β̃ ∈ Re). Therefore,

iβ̃

m
∂xφ = −

r∑
0

Bi

√
ni

2|αi |2αie
iβ̃αi ·φ/2

in which

|Bi | = 2 i = 0, 1, . . . , r or Bi = 0 i = 0, 1, . . . , r. (38)

We remark that Sklyanin’s method [3] cannot be used in ATFT except for sine–Gorden
theory; this conclusion comes from the fact thatδ 6= 0 under the independent boundary
condition if we regard (11) as a generating function. Now, we must takeδ = −iπ according
to equations (33) and (34). Sine–Gordon theory is an exception in which it is satisfied both
for δ = 0 andδ = −iπ .

As we discussed in section 3, in the classical case, no symmetry conditions of ther-
matrix are necessary in constructing the generating function for the integrals of motion. So it
is interesting to study whether commutative quantities can be constructed with less symmetry
of theR-matrix in the quantum case.

5. Quantum integrable systems with boundary

There are many papers (for example, [3, 13–19]) in which the authors deal with quantum
integrable boundary conditions in two-dimensional lattice models. As far as we know, both
unitarity and crossing unitarity conditions (or the weaker property [16]) are used in constructing
commutative quantities. Since finding the crossing unitarity condition of a givenR-matrix is
a difficult problem, it is useful to construct commutative quantities without this symmetry.
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In this section, we explore how to obtain commutative quantities by means of the unitarity
condition only. The unitarity condition reads as

R12(u)R21(−u) = ξ(u) (39)

whereξ(u) is some even scalar function and theR-matrix is a solution of the quantum Yang–
Baxter equation (YBE):

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v).
As usual, the transfer matrixt (u) is defined as

t (u) = trT+(u)T−(u) (40)

and each entry ofT+(u) commutes withT−(u).

Proposition 4. If T± satisfy such equations

R
t1t2
21 (−u−)

1
T

t1

+ (u)R
t2
21(u+ − δ)

2
T

t2

+ (v) =
2
T

t2

+ (v)R
t1
12(u+ − δ)

1
T

t1

+ (u)R12(−u−)
R12(u−)

1
T − (u)Rt1

12(−u+ + δ)
2
T − (v) =

2
T − (v)Rt2

21(−u+ + δ)
1
T − (u)Rt1t2

21 (u−) (41)

and the quantumR-matrix obeys the unitarity condition, then the transfer matrixt (u) defines
a one-parameter commutative family.

To be explicit, we useξ−1
1 andξ−1

2 to replaceξ−1(u+− δ) andξ−1(−u−), respectively, as
well asu± = u± v. The proof is direct:

t (u)t (v) = tr1
1
T + (u)

1
T − (u)tr2

2
T + (v)

2
T − (v) = tr12

1
T

t1

+ (u)
2
T + (v)

1
T

t1

− (u)
2
T − (v)

= ξ−1
1 tr12

1
T

t1

+

2
T + R21(u+ − δ)R12(−u+ + δ)

1
T

t1

−
2
T −

= ξ−1
1 tr12{

1
T

t1

+ R
t2
21(u+ − δ)

2
T

t2

+ }t2{
1
T − Rt1

12(−u+ + δ)
2
T −}t1

= ξ−1
1 ξ−1

2 tr12{
1
T

t1

+ R
t2
21(u+ − δ)

2
T

t2

+ }t1t2R21(−u−)R12(u−){
1
T − Rt1

12(−u+ + δ)
2
T −}

= ξ−1
1 ξ−1

2 tr12{Rt1t2
21 (−u−)

1
T

t1

+ R
t2
21(u+ − δ)

2
T

t2

+ }t1t2

×{R12(u−)
1
T − Rt1

12(−u+ + δ)
2
T −}.

Using equations (41), we find

t (u)t (v) = ξ−1
1 ξ−1

2 tr12{
2
T

t2

+ R
t1
12(u+ − δ)

1
T

t1

+ R12(−u−)}t1t2{ 2
T − Rt2

21(−u+ + δ)
1
T − Rt1t2

21 (u−)}

= ξ−1
1 tr12{

2
T

t2

+ R
t1
12(u+ − δ)

1
T

t1

+ }t1t2{ 2
T − Rt2

21(−u+ + δ)
1
T −}

= ξ−1
1 tr12{

2
T

t2

+ R
t1
12(u+ − δ)

1
T

t1

+ }t1{
2
T − Rt2

21(−u+ + δ)
1
T −}t2

= tr12
2
T

t2

+

1
T +

2
T

t2

−
1
T −

= t (v)t (u).
In the quantum spin chain model, it is convenient thatT± take such representations as

T+(u) = K+(u)

T−(u) = T (u)K−(u)T t(−u + δ)

= LN(u) . . . L2(u)L1(u)K−(u)Lt
1(−u + δ)Lt

2(−u + δ) . . . LtN(−u + δ)

(42)
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in which the transposition ‘t’ acts on the auxiliary space andn = 1, 2, . . . , N denote quantum
space. There is a relation betweenR andL operators

Rab(u− v)La(u)Lb(v) = Lb(v)La(u)Rab(u− v). (43)

Letting T−(u) = LN(u)T ′−(u)Lt
N(−u + δ) and inserting equation (42) into (41), we find

that the second equation of (41) becomes

LHS= Rab(u−)LaN(u)
a

T ′− L
ta
aN (−u + δ)Rta

ab(−u+ + δ)LbN(v)
b

T ′− L
tb
bN (−v + δ)

= Rab(u−)LaN(u)
a

T ′− LbN(v)R
ta
ab(−u+ + δ)Lta

aN (−u + δ)
b

T ′− L
tb
bN (−v + δ)

= LbN(v)LaN(u)Rab(u−)
a

T ′− R
ta
ab(−u+ + δ)

b

T ′− L
ta
aN (−u + δ)Ltb

bN (−v + δ)

RHS= LbN(v)
b

T ′− L
tb
bN (−v + δ)Rtb

ba(−u+ + δ)LaN(u)
a

T ′− L
ta
aN (−u + δ)Rta tb

ba (u−)

= LbN(v)
b

T ′− LaN(u)R
tb
ba(−u+ + δ)Ltb

bN (−v + δ)
a

T ′− L
ta
aN (−u + δ)Rta tb

ba (u−)

= LbN(v)LaN(u)
b

T ′− R
tb
ba(−u+ + δ)

a

T ′− R
ta tb
ba (u−)L

ta
aN (−u + δ)Ltb

bN (−v + δ).

In other words, this equation is reduced to

Rab(u−)
a

T ′− R
ta
ab(−u+ + δ)

b

T ′−=
b

T ′− R
tb
ba(−u+ + δ)

a

T ′− R
ta tb
ba (u−).

We proceed to do the above reduction repeatedly until all of theL operators beside theK−
matrix disappear. Finally, we obtain the reflection equation aboutK− only. Now, the reflection
equations ofK± are

R
t1t2
21 (−u−)

1
K

t1

+ (u)R
t2
21(u+ − δ)

2
K

t2

+ (v) =
2
K

t2

+ (v)R
t1
12(u+ − δ)

1
K

t1

+ (u)R12(−u−)
R12(u−)

1
K− (u)R

t1
12(−u+ + δ)

2
K− (v) =

2
K− (v)R

t2
21(−u+ + δ)

1
K− (u)R

t1t2
21 (u−) (44)

and the transfer matrixt (u) becomes

t (u) = trK+(u)T (u)K−(u)T t(−u + δ). (45)

We note that there is no obvious relation between theK± matrices. If some symmetry
conditions are used, a relation between theK+ andK− matrices may be found.

For example, theR-matrix in [13] hasPT symmetry and crossing unitarity

R12(u) = Rt1t2
21 (u)

R12(u) =
1
V R

t2
12(−u− ρ)

1
V

−1

. (46)

By PT symmetry, we find that there is an isomorphism between the boundary matrices:

K−(u) = K t
+(−u + δ). (47)

If both PT symmetry and crossing unitarity are considered, there is another relation

K−(u) = K−1
+ (u + ρ)M−1 M = V tV. (48)

From (47) and (48), this implies

K t
+(−u + δ)MK+(u + ρ) = Id K t

−(−u + δ)K−(u− ρ)M = Id. (49)

These equations may be regarded as constraint conditions onδ.
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Now, it is interesting to compare our commutative quantities with those of Mezincescu and
Nepomechie [13]. Using the conditions of (46) and the unitarity conditionR12(u)R21(−u) =
ξ(u), we obtain

R
t1
12(−u− ρ) = (

1
V )

t1 R
t1t2
12 (u)(

1
V

−1

)t1

= ξ(−u)( 1
V )

t1 R−1
12 (−u)(

1
V

−1

)t1

or

R
t1
12(−u + δ) = ξ(−u + ρ + δ)(

1
V )

t1 R−1
12 (−u + ρ + δ)(

1
V

−1

)t1.

If Ln(u) is defined asLn(u) ≡ Lan(u) = Ran(u), we obtain

Lt
n(−u + δ) = ξ(−u + ρ + δ)V tL−1

n (−u + ρ + δ)(V −1)t

T t(−u + δ) = Lt
1(−u + δ)Lt

2(−u + δ) . . . Lt
N(−u + δ)

= ξN(−u + ρ + δ)V tT −1(−u + ρ + δ)(V −1)t.

In other words, the transfer matrix (45) becomes

t (u) = trK+(u)T (u)K−(u)(ξN(−u + ρ + δ)V tT −1(−u + ρ + δ)(V −1)t)

= ξN(−u + ρ + δ)tr((V −1)tK+(u))T (u)(K−(u)V t)T −1(−u + ρ + δ).

(50)

It is convenient to multiply (50) byξ−N(−u+ρ+δ) before we regard it as the commutative
quantities, i.e.

t (u) = trK ′+(u)T (u)K
′
−(u)T

−1(−u + ρ + δ).

If δ is equal to−ρ, it is just the same as that in [13].
As one of the main results of our paper, we have constructed the commutative quantities

with the unitarity condition of the quantumR-matrix only. As discussed in the classical case,
with symmetry conditions of (46), we can find another form of the commutative quantities,
and these two forms are in fact the same when both are regarded as commutative quantities.

Finally, we study the classical counterparts of the reflection equations (44) by modifying
the unitarity condition toR12(u)R21(−u) = Id. In the classical limit, as ¯h → 0, one has
[3, 20]:

[ , ] = −ih̄{ , } R(u) = Id + ih̄r(u) + o(h̄2).

So the unitarity condition impliesr12(u) = −r21(−u) and the quantum YBE goes over into
the classical YBE. We find that reflection equations (44) just turn into equation (24) in which
r(α, β) is now equal tor(α − β). In contrast with the quantum case, there is an isomorphism
betweenK+ andK−, which isK+(α)→ K−1

− (α) in the classical case.

6. Conclusion and discussion

In this paper, we have obtained three possible generating functions for the integrals of motion in
classically integrable field theory on a finite interval with independent boundary conditions at
each end. As constraint conditions, we find the algebra and evolution equations ofK±matrices.
In contrast with other methods, a new parameter is added onto the spectral parameter, and we
expect it shall simplify the procedure of solving theK±matrices effectively. In ATFT, we prove
that these generating functions are equivalent to each other and their links are also discussed.
Our results show that two of these generating functions are always valid in both the real and
imaginary coupling constant cases.
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It is remarkable that no symmetry condition of ther-matrix is used when we regard
quantities (11)–(13) as generating functions for the integrals of motion, so we expect it can be
applied to more integrable models than are in [3, 5]. As demonstrated in section 4, the added
parameterδ improves this possibility.

We have also extended our results to a quantum spin chain and have proved that the
unitarity condition of the quantumR-matrix is sufficient to construct commutative quantities
with boundary. The reflection equations ofK± are obtained. The relation between the boundary
K± matrices found whenPT symmetry and the crossing unitarity condition of theR-matrix
are considered. With these symmetry conditions, we have also found another form of the
commutative quantities different from that defined in [13]. Finally, we have found that classical
counterparts of the quantum reflection equations are just those which are obtained from the
classical quantity (12).
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